В МФТИ научились получать наноразмерную керамику для «печати» транзисторов и другой электроники
Результаты работы представлены в журнале Ceramics International, сообщили представители МФТИ.
Наноразмерная керамика — это керамические материалы, размер частиц которых находится в диапазоне от 1 до 100 нанометров. Благодаря своему малому размеру, такие материалы обладают уникальными физическими и химическими свойствами, которые отличают их от традиционных керамик.
Материал используется в производстве различных электронных компонентов, таких как конденсаторы, резисторы и транзисторы. Он позволяет создавать устройства электроники на гибких подложках. Также наноразмерные керамические материалы применяются в производстве светодиодов, лазеров и других оптических элементов. Подобные керамики имеют более высокую прочность и жесткость по сравнению с крупнозернистыми аналогами. Также наноразмерные керамики могут проявлять уникальные оптические эффекты, такие как флуоресценция.
Традиционно, для получения керамических материалов используют технологию твердофазного синтеза — спекания исходных материалов при высокой температуре, как правило около 1300°C. Чем выше температуры спекания, тем больше размер частиц получаемой керамики.
Метод производства наноразмерной керамики, предложенный учеными МФТИ, позволяет создавать материал с различной степенью кристалличности, варьируя от полностью аморфного до высоко кристаллического. Добиться этого ученым удалось, изменяя температуру отжига от 500 до 900 градусов Цельсия. При этом в полученном материале не было никаких нежелательных кристаллических примесей.
«Созданная технология позволяет достигнуть значительно более низких температур, что дает сохранить малый размер частиц. Это, в свою очередь, благоприятно отразится на свойствах получаемых “чернил”, которыми в дальнейшем планируется “печать” электронных устройств. Использовать порошки, полученные высокотемпературными технологиями нельзя, поскольку чернила не будут иметь необходимых свойств и не будут стабильны, этим и был обоснован поиск новой технологии получения», – сказал первый автор исследования сотрудник лаборатории полупроводниковых оксидных материалов МФТИ Глеб Зирник.
В своем исследовании ученые также провели оптические измерения, чтобы выяснить, как размер кристаллов влияет на их свойства. В частности, они изучили поглощение в области инфракрасного спектра в материале и обнаружили 17 характерных линий поглощения, связанных с колебаниями атомов. Эти характеристики сильно зависят от температуры, при которой происходил процесс спекания, и, следовательно, от размера кристаллов.
По словам старшего научного сотрудника- заместителя заведующего лабораторией Светланы Гудковой, подобный подход имеет перспективы применения для получения как материалов системы In-Ga-Zn-O, так и для других оксидных систем. Например, метод незаменим для получения замещенных ферритовых материалов, чем также занимается наша лаборатория.
«Чтобы понять, как растут частицы оксида индия-галлия-цинка, мы провели ряд экспериментов с использованием рентгеновской дифракции. Мы изучили, как изменяются условия роста частиц в зависимости от температуры и времени. Также мы рассчитали энергию активации роста частиц при различных условиях термической обработки. С помощью различных методов электронной микроскопии мы исследовали форму и состояние кристаллов, полученных при различных температурах. Элементы в материале распределены равномерно, аморфных примесей нет. Говоря иначе – метод синтеза был применен успешно», – сказал один из авторов исследования заведующий лабораторией полупроводниковых оксидных материалов МФТИ Денис Винник.
Полученные результаты могут быть полезны для дальнейшей разработки на основе IGZO (индий-галлий-цинк-оксид) «чернил», необходимых, например, в производстве электроники, или для печати на различных поверхностях.
Сообщение В МФТИ научились получать наноразмерную керамику для «печати» транзисторов и другой электроники появились сначала на Время электроники.