Прорыв в квантовых вычислениях: южнокорейские исследователи достигли рекорда в квантовой запутанности с 8-кубитной схемой
Группа исследователей из Южной Кореи достигла значительного прогресса в разработке интегральной квантовой схемы, используя фотоны для управления восемью кубитами. Эта система, созданная в ETRI (Electronics and Telecommunications Research Institute), позволяет изучать различные квантовые явления, такие как многочастичная запутанность, возникающая в результате взаимодействия фотонов.
ETRI имеет богатый опыт в области кремниево-фотонных квантовых схем, ранее продемонстрировав 2-кубитную и 4-кубитную квантовую запутанность с лучшей производительностью 4-кубитного кремниевого фотонного чипа. Эти достижения стали результатом сотрудничества с KAIST и Университетом Тренто в Италии и были опубликованы в научных журналах Photonics Research и APL Photonics.
Недавно ETRI удалось продемонстрировать 6-кубитную запутанность с использованием чипа, разработанного для управления 8-фотонными кубитами. Это рекордное достижение в квантовых состояниях на основе кремниево-фотонного чипа.
Схема 4-кубитного чипа Recon Photonics. Источник: Научно-исследовательский институт электроники и телекоммуникаций (ETRI)Квантовые схемы на основе фотонных кубитов считаются одними из самых перспективных технологий для создания универсального квантового компьютера. Несколько фотонных кубитов могут быть интегрированы в крошечный кремниевый чип размером, а большое количество этих чипов может быть соединено с помощью оптических волокон, образуя обширную сеть кубитов. Фотонные квантовые компьютеры предлагают преимущества с точки зрения масштабируемости, работы при комнатной температуре и низкого потребления энергии.
Фотонный кубит может быть закодирован с использованием пары путей распространения фотона, при этом один путь назначается как 0, а другой как 1. Для схемы из 4 кубитов требуется 8 путей распространения, а для 8 кубитов — 16 путей. Квантовыми состояниями можно манипулировать на фотонном чипе, который включает в себя источники фотонов, оптические фильтры и линейно-оптические переключатели, а затем измерять с помощью высокочувствительных однофотонных детекторов.
8-кубитный чип ETRI включает 8 фотонных источников и около 40 оптических переключателей, которые управляют путями распространения фотонов. Около половины из этих 40 переключателей используются как линейно-оптические квантовые вентили. Установка обеспечивает основу для квантового компьютера, измеряя конечные квантовые состояния с помощью однофотонных детекторов.
Исследовательская группа измерила эффект Хонг-Оу-Манделя, — квантовое явление, при котором два разных фотона, входящих с разных направлений, могут интерферировать и двигаться вместе по одному и тому же пути. Они также продемонстрировали запутанное состояние 4 кубитов на интегральной схеме с 4 кубитами (5 мм x 5 мм).
Недавно исследователи расширили свои исследования до 8-фотонных экспериментов с использованием 8-кубитной интегральной схемы (10 мм x 5 мм). Они планируют изготовить 16-кубитные чипы в течение этого года, а затем масштабировать их до 32 кубитов в рамках своих текущих исследований в области квантовых вычислений.
Юн Чун-Джу, помощник вице-президента отдела квантовых исследований ETRI, сказал: «Мы планируем усовершенствовать нашу технологию квантового оборудования для облачного сервиса квантовых вычислений. Наша главная цель — разработать систему лабораторного масштаба для укрепления исследовательских возможностей в области квантовых вычислений».
Ли Чон Му из отдела исследований квантовых вычислений ETRI, который руководил этим проектом, добавил: «Исследования по практическому внедрению квантовых компьютеров ведутся очень активно во всём мире. Однако для реализации практических квантовых вычислений по-прежнему необходимы обширные долгосрочные исследования, особенно для преодоления вычислительных ошибок, вызванных шумом в квантовых процессах».