Ключевые прорывы в солнечной энергетике в 2022 году - в перовскитах
Фотоэлемент из перовскита — восходящая звезда в области солнечной энергетики, преобразующей свет в электричество. Перовскитовые полупроводники для фотоэлементов можно изготавливать при комнатной температуре и с меньшими затратами, чем кремниевые. Кроме того, в отличие от них, перовскитовые фотоэлементы могут быть гибкими и полупрозрачными, что расширяет область их применения. Более того, их даже можно скручивать и складывать, как https://hightech.plus/2022/06/28/sozdan-pervii-tandemnii-fot... немецкие ученые, разработавшие слоеный фотоэлемент из перовскита и селенида меди-индия.
Минувший год начался с рекорда производительности тандемного солнечного элемента, созданного из перовскитовых и органических материалов. В прошлом эффективность таких устройств отставала от других типов тандемных фотоэлементов. Однако ученым из Университета Сингапура https://hightech.plus/2022/01/23/deshevii-fotoelement-iz-per... разработать прорывной внутрисхемный слой, который снижает потери по напряжению, оптике и электричеству. Эта инновация повысила производительность перовскитово-органических тандемных солнечных элементов до 23,6%.
А в середине года был преодолен лимит производительности для других типов тандемных фотоэлементов – перовскитово-кремниевых. Оба материала отлично работают вместе, поглощая волны разной длины — кремний отлично работает в красном и инфракрасном спектрах, перовскиты — в зеленом и синем. Швейцарские ученые https://hightech.plus/2022/07/11/tandemnie-solnechnie-elemen... КПД 30,93% для устройства площадью 1 см². Еще четыре года назад этот показатель для элементов аналогичной архитектуры составлял 25,2%.
При всех своих плюсах перовскитовые элементы слишком хрупкие. Первые образцы, созданные в 2009–2012 годах, ломались через несколько минут работы. В 2017 был установлен рекорд — фотоэлемент из перовскита проработал год под постоянным освещением в лабораторных условиях. Новое https://hightech.plus/2022/06/17/sozdan-pervii-perovskitovii..., предложенное в прошлом году учеными из Принстона, в пять раз превосходит его по сроку службы в тех же условиях. По оценкам разработчиков, устройство может работать с повышенной производительностью в течение 30 лет.
Причину ограниченного срока службы перовскитовых фотоэлементов https://hightech.plus/2022/05/25/uchenie-nashli-prichinu-bis... специалисты из Великобритании и Японии. Винить нужно крошечные дефекты, которые образуются на поверхности перовскитовой пленки и приводят к фотодеструкции. Более того, ученые доказали, что этот недостаток можно исправить, изменив химический состав и способ формирования пленки.
Не только тандемные, но и однослойные фотоэлементы из перовскита продемонстрировали в ушедшем году новые достижения. Команда исследователей из Гонконга и Великобритании https://hightech.plus/2022/04/25/razrabotan-stabilnii-i-effe... высокоэффективный и стабильный фотоэлемент с инвертированной структурой. Они добавили в состав фотоэлемента ферроцены, металлорганические соединения, которые служат интерфейсом между светопоглощающим слоем и слоем переноса электронов. В результате элемент достиг рекордной эффективности в 25% и прошел тест на стабильность по стандартам Международной электротехнической комиссии.
КПД перовскитового фотоэлемента, созданного специалистами Южной Кореи, не такое выдающееся – всего 21,4% – зато они отличаются высокой устойчивостью к влажности и температуре. Вдобавок https://hightech.plus/2022/10/21/proriv-v-razrabotke-stabiln... показало повышенную долгосрочную стабильность — после 1000 часов работы оно сохранило 62% КПД при влажности 60–70% и комнатной температуре даже без изоляции элемента.
Впрочем, и для обычных, кремниевых фотоэлементов 2022 год был не лишен побед. Весной ученые из Национальной лаборатории возобновляемой энергии США https://hightech.plus/2022/05/20/novii-absolyutnii-rekord-ef... 39,5-процентной производительности, самого высокого показателя эффективности для любого типа фотоэлементов при естественном освещении. Устройства собраны на основе архитектуры инвертированных метаморфических многопереходных (IMM) элементов с квантовыми колодцами в среднем слое, которые значимо повышают общую эффективность.