Старинные и сказочные головоломки
Пчелы
Вот одна задача из древнего индийского трактата:
- если 1/5 пчелиного роя полетела на цветы лаванды, 1/3 – на цветы липы, утроенная разность этих чисел полетела на дерево, а одна пчела продолжала летать между ароматными кетаки и малати, то сколько всего было пчел?
Ответ: Всего было 15 пчел. Любой современный школьник легко решит эту задачу с помощью уравнения, но попробуйте решить арифметически.
Стая гусей
Летела стая гусей, а навстречу им летит один гусь и говорит: "Здравствуйте, сто гусей!" "Нас не сто гусей,- отвечает ему вожак стаи,- если бы нас было столько, сколько теперь, да еще столько, да полстолька, да четверть столька, да еще ты, гусь, с нами, так тогда нас было бы сто гусей". Сколько было в стае гусей?
Ответ: В стае было 36 гусей. 36+36+18+9+1 = 100
Задача для репетитора
В рассказе А. П. Чехова "Репетитор" гимназист Егор Зиберов не сумел решить арифметическую задачу, а отец репетируемого ученика, отставной губернский секретарь Удодов, пощелкав на счетах, получил правильный ответ. Решите и Вы эту задачу арифметически. Интересно, умеют ли решать подобные задачи современные репетиторы. Вот она.
Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он и того и другого, если синее стоило 5 руб. за аршин, а черное - 3 руб.?
Ответ: Если бы купец приобрел сукно одного типа, например синее, то он заплатил бы 138*5 = 690 руб. Образовавшаяся разность в 150 руб. получена за счет того, что черное сукно повышено в цене на 2 руб. Значит, черного сукна было 150:2 = 75 аршин, а синего было 138-75 = 63 аршина.
Странный дом
Сооружено сее жильё всего из одного камня, либо из досок деревянных двух. Есть у дома сего ограда, цветник, подвал. Живёт в сеём жилище всего один человек, стар или млад. Но не выходит человек этот из подвала, ни чтобы цветником полюбоваться, ни чтобы иное дело сделать. Не двигается и не ест и не пьёт человек сей. Вопрос: почему?
Ответ: "Жилец" - покойник. Камень - надгробие, две доски - крест, цветник - высаженные цветы.
Трудное наследство
Итальянец Тарталья, который первым обнаружил способ нахождения корней кубического уравнения, придумал задачу о семнадцати лошадях.
В завещании умершего отца семейства говорилось, что имевшихся в хозяйстве семнадцать лошадей следовало поделить между тремя наследниками в отношении одна вторая к одной третьей к одной девятой. Как выполнить завещание?
Ответ: 2, 6 и 9 лошадей. Сам Тарталья предложил следующее решение. Для раздела имеющихся лошадей необходимо заимствовать еще одну, после чего их общее количество станет 18. Раздел этого количества даст 2, 6 и 9 лошадей, которых в сумме окажется 17. Одна лошадь из 18 оказалась как бы "лишней" - это заимствованная лошадь, которую следует вернуть владельцу после раздела имущества. Проще решить головоломку иначе: пропорцию 1\2 : 1\3 : 1\9 достаточно домножить на 18 и получится тот же результат.
100 учеников
Еще одна задача из книги "Арифметика" Леонтия Магницкого.
Отец решил отдать сына в учебу и спросил учителя: "Скажи, сколько учеников у тебя в классе?" Учитель ответил: "Если придет еще учеников столько же, сколько имею, и полстолько, и четвертая часть, и твой сын, тогда будет у меня сто учеников". Сколько же учеников было в классе?
Ответ: 36 учеников.
Кролики Фибоначчи
Эта задача придумана итальянским ученым Фибоначчи, жившим в 13-м веке.
Некто приобрел пару кроликов и поместил их в огороженный со всех сторон загон. Сколько кроликов будет через год, если считать, что каждый месяц пара дает в качестве приплода новую пару кроликов, которые со второго месяца жизни также начинают приносить приплод?
Ответ: 377 пар. В первый месяц кроликов окажется уже 2 пары: 1 первоначальная пара, давшая приплод, и 1 родившаяся пара. Во второй месяц кроликов будет 3 пары: 1 первоначальная, снова давшая приплод, 1 растущая и 1 родившаяся. В третьем месяце - 5 пар: 2 пары, давшие приплод, 1 растущая и 2 родившиеся. В четвертом месяце - 8 пар: 3 пары, давшие приплод, 2 растущие пары, 3 родившишиеся пары. Продолжая рассмотрение по месяцам, можно установить связь между количествами кроликов в текущий месяц и в два предыдущих. Если обозначить количество пар через N, а через m - порядковый номер месяца, то Nm = Nm-1 + Nm-2 . С помощью этого выражения рассчитывают количество кроликов по месяцам года: 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377.
Ревнивые мужья
В старинном русском сборнике занимательных задач есть следующая: "Три ревнивых мужа, пришедши с женами своими к берегу реки, нашли при оном лодку, в которую по ее малости более двух человек вмещаться не могло. Почему спрашивается, как бы через реку переехать сим шести человекам так, чтобы ни одна жена с чужим мужем не переезжала и ни на котором берегу не оставалась"
Ответ: Обозначим пары через Аа, Бб, Вв (маленькими буквами обозначим женщин). Вот схема перевозок, реализующая нужную переправу за 11 рейсов:
рейс | берег левый | в лодке | берег правый |
---|---|---|---|
1 | Бб Вв | Аа=> | Аа |
2 | А Бб Вв | <=А | а |
3 | А Б В | б в=> | а б в |
4 | Аа Б В | <=а | б в |
5 | Аа | Б В=> | Бб Вв |
6 | Аа Бб | <=Бб | Вв |
7 | а б | А Б=> | А Б Вв |
8 | а б в | <=в | А Б В |
9 | а | б в=> | А Бб Вв |
10 | а б | <=б | А Б Вв |
11 | а б=> | Аа Бб Вв |
Стрелки указывают направление движения лодки.
А вы знали об этом?
Лошадь за 16 000 000 $Что удивительно, немалую сумму заплатили вовсе не за арабского скакуна из конюшни какого-либо шейха или султана. Пальму первенства в вопросе стоимости уже много лет подряд удерживает американский скакун по кличке Зеленая Обезьяна. Этого прекрасного во всех смыслах животного не стало в июле 2018 года. Но смерть не мешает ему оставаться «№1», причем не только с позиции цены. Зеленая Обезьяна пробегал двести метров за 9,8 секунды. Ни одна лошадь не смогла приблизиться к этому рекорду ни в прошлом, ни в настоящем.
Уважаемые друзья! Если вам понравилась статья — поставьте лайк и ,пожалуйста, подпишитесь на канал.
Рекомендую также прочесть:
А вы знали об этом?(Статья 38) https://otari.mirtesen.ru/blog/43318640894/
Ваше мнение для меня важно, поэтому буду весьма благодарен за ваши комментарии!