Как мы решили проблему батчевых загрузок в реляционные СУБД, или Немного хорошего о «худших практиках» в Spark
Всем привет! Меня зовут Алексей Николаев, я работаю дата-инженером в команде ETL-платформы MWS Data (ex DataOps). Часто сталкиваюсь с тем, что в сложной инфраструктуре и больших проектах простые, на первый взгляд, задачи по работе с данными очень сильно усложняются. В результате возникают ситуации, когда хорошие практики превращаются в плохие решения, а плохие практики как раз могут дать хороший результат.
Мои коллеги уже рассказывали про нашу платформу, ее внедрение внутри экосистемы и наши инструменты для работы с данными. В процессе развития продукта перед нами встала проблема массовых регламентных загрузок данных из реляционных источников. Для этого мы создали внутренний инструмент — библиотеку d-van. В качестве движка в ней используется Apache Spark, с которым она взаимодействует через библиотеку onETL. На примере d-van я покажу нестандартный подход к использованию возможностей Apache Spark. Расскажу, какие задачи можно решить с помощью режима master=local и как свой инструмент может стать альтернативой Apache Nifi или Debezium.
Читать далее