Горожанам рассказали, как работают рекомендательные системы на основе нейросетей в московских сервисах
Разработчики цифровых продуктов всё чаще применяют нейросети для создания рекомендательных систем. Они помогают пользователям находить интересные фильмы и сериалы на стриминговых платформах, подбирать музыку в музыкальных сервисах, советуют книги и другие товары.
Технология нашла применение и в городских проектах. Например, в сервисе поиска и бронирования книг «Библиотеки Москвы» на mos.ru нейросети рекомендуют пользователям издания на основе предыдущих заказов, формируя персональные подборки книг. Для решения схожих задач искусственный интеллект применяется и на портале поставщиков — там нейросети могут подсказать подходящие тендеры. О том, как работают рекомендательные алгоритмы и как они определяют, что может понравиться пользователю, рассказали эксперты ДИТ.
«Рекомендательные сервисы — одно из самых популярных направлений применения технологий искусственного интеллекта. Недавнее исследование аналитиков ДИТ показало, что за последний год почти 70% москвичей хотя бы раз получали персональные рекомендации в интернете, а 28% пользуются такими сервисами каждый день. Учитывая этот тренд, Москва также внедряет рекомендательные системы на основе нейросетей в городских сервисах, чтобы сделать их еще более полезными и удобными для пользователей», — отметили в пресс-службе Департаменте информационных технологий города Москвы.
Как работают рекомендательные алгоритмы
Рекомендательные системы используют алгоритмы машинного обучения и анализа больших данных для выявления закономерностей и предпочтений пользователей. Нейросети анализируют информацию, которую можно использовать для составления персональных рекомендаций: например, сведения о предыдущих покупках, тематиках просмотренных страниц, поисковых запросах, прослушанной музыке или просмотренных фильмах. На основе этих сведений составляется обезличенный «портрет» пользователя, который отражает его предпочтения и интересы.
На следующем этапе алгоритмы анализируют «портрет» пользователя и сравнивают его с доступным контентом, товарами или услугами, а затем применяют фильтры, чтобы определить, какие элементы могут быть наиболее интересными для конкретного пользователя. Так система предлагает товары или услуги, которые с наибольшей вероятностью его заинтересуют.
Некоторые сервисы используют обратную связь от пользователя для обучения модели. Например, если человек положительно оценил предложенный фильм, алгоритмы учитывают эту информацию при формировании будущих рекомендаций — уникальных для каждого пользователя и соответствующих именно его потребностям.
Рекомендательные системы широко применяются в электронной коммерции, сферах рекламы и маркетинга, развлечений и других.
Как работают рекомендательные системы на портале поставщиков
Одним из примеров использования рекомендательных систем в цифровых проектах столицы является московский портал поставщиков. На нем поставщики могут воспользоваться рекомендательным сервисом персонализированной подписки на закупки. После того, как пользователь выберет интересующие категории товаров, работ и услуг, система автоматически сформирует предложения на основе анализа нескольких ключевых факторов: каталога предлагаемой поставщиком продукции, истории участия пользователя в закупках, заключенным контрактам, региону нахождения.
Для поиска и подбора подходящих закупок используется технология поиска в неупорядоченном множестве данных. Это значит, что система может быстро найти нужную информацию даже в тех случаях, когда она находится среди большого количества других данных, не отсортированных по какому-либо признаку. Такая технология широко применяется в областях, где требуется работа с большим объемом информации. Она помогает оптимизировать процессы и повысить эффективность работы.
Например, если предприниматель ищет среди опубликованных закупок заказчиков подходящие, он может ввести ключевые слова (название товара, бренд и так далее). Система проанализирует все доступные данные и найдет те, которые соответствуют критериям поиска. Это позволяет максимально точно сопоставлять предложения в портфеле продукции пользователя с актуальными потребностями и ускорить процесс поиска и подбора необходимых закупочных процедур.
Чтобы сделать подписку еще более точной и персонализированной, поставщик может вручную корректировать ее, добавляя или исключая определенные закупки. Таким образом, сервис упрощает и ускоряет процесс поиска и участия пользователей в актуальных и релевантных для них закупках, экономя их время и усилия.
Помимо этого, с 2019 года более эффективно работать с каталогом товаров на портале поставщиков пользователям помогает технология распознавания изображений. При заполнении карточки новой товарной единицы в каталоге пользователю достаточно загрузить изображение товара, и система за несколько секунд проанализирует картинку. Она определит, что это за товар, и порекомендует подходящую категорию.
Например, если пользователь загружает изображение шариковой ручки, нейросеть предложит категорию «канцтовары», если на картинке изображено офисное кресло — «мебель», корм для собак — «зоотовары». В каталоге есть и другие категории: бумага, медицинские изделия, инженерно-строительные товары, текстильные изделия и многое другое. Кроме того, нейросеть подскажет, есть ли уже в каталоге подобные записи. Это позволяет сократить время на заполнение карточки товара, его описание и характеристик. Точность определения категории на сегодня составляет 94%.
Персональные рекомендации в сервисе «Библиотеки Москвы»
Ещё один пример — сервис поиска и бронирования книг «Библиотеки Москвы» на портале mos.ru. Здесь рекомендательная система помогает находить книги по интересующим пользователей темам, жанрам и авторам. Алгоритмы искусственного интеллекта начали использовать в сервисе в июне прошлого года. Они анализируют информацию о том, какие издания пользователь бронировал ранее или добавлял в избранное, а также какие книги просматривал.
Когда пользователь бронирует книгу определенного автора или жанра, сервис запоминает его решение и предлагает похожие по тематике издания или книги того же писателя. Например, если пользователь заказывал или добавлял в избранное детективы, система может порекомендовать ему книги Агаты Кристи, Артура Конан Дойла, Эдгара По и других авторов. А если пользователь забронировал научное издание или литературу по саморазвитию, то ему будут предложены другие книги в этом жанре. Такой подход упрощает поиск литературы и помогает москвичам открыть для себя новые интересные произведения.
Персональная подборка литературы доступна на главной странице сервиса «Библиотеки Москвы» в разделе «Вам может понравиться». У тех, кто еще не пользовался сервисом, в рекомендациях отображается список самых популярных у других читателей изданий. С момента появления рекомендательной системы пользователи сервиса ознакомились с книгами персональных подборок более 62 тысяч раз.
Чтобы воспользоваться сервисом, необходим единый читательский билет. Его можно оформить на mos.ru или в любой городской библиотеке, взяв с собой паспорт. Понравившуюся книгу можно забронировать в ближайшей удобной читальне, в которой она есть в наличии. Заказ подготовят к выдаче в течение трех дней, после чего у пользователя будет еще три дня, чтобы его забрать. В кабинете читателя в сервисе можно найти информацию обо всех забронированных книгах, узнать, какие издания находятся у него сейчас и когда их нужно вернуть, а также продлить срок возврата.