ru24.pro
Все новости
Декабрь
2024

Ученые МГУ рассчитали параметры воздухозаборника спутника для сверхнизких орбит Земли

Коллектив ученых НОШ МГУ провел моделирование течения разреженного газа внутри воздухозаборника космического аппарата (КА), движущегося на сверхнизких орбитах Земли (120-150 километров). Основная задача такого воздухозаборника — захватить часть набегающего потока и привести этот газ в состояние, пригодное для подачи в ионизационную камеру двигателя. Удалось установить зависимость компрессии газа в воздухозаборнике от геометрических параметров воздухозаборника, ориентации аппарата относительно набегающего потока и свойств материалов поверхности. Об этом сообщили в пресс-службе вуза. 

Результаты исследования опубликованы в журнале Acta Astronautica.

Данная работа связана с амбициозной задачей освоения сверхнизких орбит Земли, которая решается совместными усилиями физического факультета, механико-математического факультета и факультета космических исследований в рамках НОШ МГУ «Фундаментальные и прикладные исследования космоса». На сверхнизких орбитах космический аппарат испытывает заметное аэродинамическое сопротивление. Чтобы его компенсировать, требуется обеспечить двигатель необходимым количеством рабочего тела, то есть газом, который ионизируется, разгоняется и выбрасывается с огромной скоростью через сопло двигателя, создавая тягу.

«Мы рассмотрели вариант, когда рабочее тело для двигателя собирается прямо из набегающего потока. Для этого аппарат оснащается воздухозаборником, основная задача которого состоит в обеспечении необходимого потока и плотности газа в ионизационной камере двигателя. Мы указали на существующие в литературе принципиальные ошибки при моделировании таких течений, а также показали некорректность рассмотрения воздухозаборника в отрыве от следующих за ним элементов внутреннего тракта аппарата», — рассказал доцент кафедры инженерной механики и прикладной математики механико-математического факультета МГУ Артем Якунчиков.

Аэродинамическая задача решалась с помощью метода событийного молекулярно-динамического моделирования в трехмерной постановке. Набегающий поток описывался миллионами молекул, параметры которых соответствовали параметрам атмосферы на изучаемой высоте (140 километров). Молекулы взаимодействовали с элементами конструкции аппарата, а также между собой. В результате такого моделирования были получены поля всех термодинамических параметров внутри воздухозаборника и в области предполагаемой ионизации, а также силы и тепловые потоки ко всем поверхностям. Это позволило сделать несколько практически значимых выводов о геометрических параметрах воздухозаборника, влиянии закона рассеяния молекул на поверхностях аппарата и угла атаки на компрессию и расход газа в таких системах.

Междисциплинарные научно-образовательные школы МГУ организованы в 2020 году решением ректора Московского университета Виктора Садовничего. Школы — это внеструктурные подразделения МГУ, в которых объединены ученые и преподаватели самых разных специальностей, вместе решающие крупные научно-практические задачи. Основной принцип работы школ — это междисциплинарность, то есть работа над одной и той же проблемой с использованием методов из разных областей наук. Такой подход позволяет существенно повысить эффективность работы и приводит к получению прорывных результатов, обеспечивающих ответ на большие вызовы, стоящие сегодня перед обществом. Научная работа школ организована в форме реализации грантовых проектов, которые университет финансирует за счет собственных средств. Обязательным условием является создание, актуализация и реализация в МГУ учебных курсов на основе результатов, получаемых в рамках научных проектов школ. 

В настоящее время в МГУ созданы и успешно работают следующие научно-образовательные школы: «Фундаментальные и прикладные исследования космоса», «Сохранение мирового культурно-исторического наследия», «Мозг, когнитивные системы, искусственный интеллект», «Молекулярные технологии живых систем и синтетическая биология», «Математические методы анализа сложных систем», «Фотонные и квантовые технологии. Цифровая медицина», «Будущее планеты и глобальные изменения окружающей среды».