Benchmarking uncertainty quantification for protein engineering
0
by Kevin P. Greenman, Ava P. Amini, Kevin K. Yang
Machine learning sequence-function models for proteins could enable significant advances in protein engineering, especially when paired with state-of-the-art methods to select new sequences for property optimization and/or model improvement. Such methods (Bayesian optimization and active learning) require calibrated estimations of model uncertainty. While studies have benchmarked a variety of deep learning uncertainty quantification (UQ) methods on standard and molecular machine-learning datasets, it is not clear if these results extend to protein datasets. In this work, we implemented a panel of deep learning UQ methods on regression tasks from the Fitness Landscape Inference for Proteins (FLIP) benchmark. We compared results across different degrees of distributional shift using metrics that assess each UQ method’s accuracy, calibration, coverage, width, and rank correlation. Additionally, we compared these metrics using one-hot encoding and pretrained language model representations, and we tested the UQ methods in retrospective active learning and Bayesian optimization settings. Our results indicate that there is no single best UQ method across all datasets, splits, and metrics, and that uncertainty-based sampling is often unable to outperform greedy sampling in Bayesian optimization. These benchmarks enable us to provide recommendations for more effective design of biological sequences using machine learning.