Prevalence of endoepicardial asynchrony and breakthrough patterns in a bilayer computational model of heterogeneous endoepicardial dissociation in the left atrium
by Elham Zakeri Zafarghandi, Vincent Jacquemet
BackgroundTransmural propagation and endoepicardial delays in activation observed in patients with atrial fibrillation are hypothesized to be associated with structural remodeling and endoepicardial dissociation. We aim to explore in a computational model how the distribution of delays and the rate of endo- and epicardial breakthrough activation patterns are affected by fibrosis and heterogeneous layer dissociation.
MethodsA bilayer interconnected cable model of the left atrium was used to simulate a total of 4,800 episodes of atrial fibrillation on 960 different arrhythmogenic substrates with up to 30% epicardium-only diffuse fibrosis. Endoepicardial connections were heterogeneously distributed following random spatial patterns (characteristic length scale from 1.6 to 11.4 mm). Intermediate nodes were introduced in the transmural connections to enable the simulation of weaker coupling. This heterogeneous interlayer dissociation divided the atrial bilayer into connected and disconnected regions (from 27 to 48,000 connected regions). Activation time series were extracted in both layers to compute endoepicardial delays and detect breakthrough patterns.
ResultsBecause of epicardial fibrosis, fibrillatory waves were driven by the endocardium, which generated endoepicardial delays. The delays in the connected regions (up to 10 ms, but generally < 5 ms) were prolonged by higher fibrosis density and weaker coupling. Disconnected regions allowed longer delays (> 15 ms) and promoted the occurrence of breakthroughs. These breakthroughs had short lifespan (< 10–20 ms) and were more prevalent with higher fibrosis density and heterogeneous dissociation (larger disconnected regions). Severe remodeling (< 500 connected regions) was needed to produce clinically reported rates (> 0.1 breakthrough/cycle/cm2).
ConclusionHeterogeneous endoepicardial dissociation aggravates activation delays and increases the prevalence of epicardial breakthroughs.