The human posterior parietal cortices orthogonalize the representation of different streams of information concurrently coded in visual working memory
0
by Yaoda Xu
The key to adaptive visual processing lies in the ability to maintain goal-directed visual representation in the face of distraction. In visual working memory (VWM), distraction may come from the coding of distractors or other concurrently retained targets. This fMRI study reveals a common representational geometry that our brain uses to combat both types of distractions in VWM. Specifically, using fMRI pattern decoding, the human posterior parietal cortex is shown to orthogonalize the representations of different streams of information concurrently coded in VWM, whether they are targets and distractors, or different targets concurrently held in VWM. The latter is also seen in the human occipitotemporal cortex. Such a representational geometry provides an elegant and simple solution to enable independent information readout, effectively combating distraction from the different streams of information, while accommodating their concurrent representations. This representational scheme differs from mechanisms that actively suppress or block the encoding of distractors to reduce interference. It is likely a general neural representational principle that supports our ability to represent information beyond VWM in other situations where multiple streams of visual information are tracked and processed simultaneously.