ru24.pro
News in English
Ноябрь
2024

Quantification of electrochemically accessible iridium oxide surface area with mercury underpotential deposition | Science Advances

0

Abstract

Research drives development of sustainable electrocatalytic technologies, but efforts are hindered by inconsistent reporting of advances in catalytic performance. Iridium-based oxide catalysts are widely studied for electrocatalytic technologies, particularly for the oxygen evolution reaction (OER) for proton exchange membrane water electrolysis, but insufficient techniques for quantifying electrochemically accessible iridium active sites impede accurate assessment of intrinsic activity improvements. We develop mercury underpotential deposition and stripping as a reversible electrochemical adsorption process to robustly quantify iridium sites and consistently normalize OER performance of benchmark IrO x electrodes to a single intrinsic activity curve, where other commonly used normalization methods cannot. Through rigorous deconvolution of mercury redox and reproportionation reactions, we extract net monolayer deposition and stripping of mercury on iridium sites throughout testing using a rotating ring disk electrode. This technique is a transformative method to standardize OER performance across a wide range of iridium-based materials and quantify electrochemical iridium active sites.