ru24.pro
News in English
Октябрь
2024
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19
20
21
22
23
24
25
26
27
28
29
30
31

Partial correlation network analysis identifies coordinated gene expression within a regional cluster of COPD genome-wide association signals

0

by Michele Gentili, Kimberly Glass, Enrico Maiorino, Brian D. Hobbs, Zhonghui Xu, Peter J. Castaldi, Michael H. Cho, Craig P. Hersh, Dandi Qiao, Jarrett D. Morrow, Vincent J. Carey, John Platig, Edwin K. Silverman

Chronic obstructive pulmonary disease (COPD) is a complex disease influenced by well-established environmental exposures (most notably, cigarette smoking) and incompletely defined genetic factors. The chromosome 4q region harbors multiple genetic risk loci for COPD, including signals near HHIP, FAM13A, GSTCD, TET2, and BTC. Leveraging RNA-Seq data from lung tissue in COPD cases and controls, we estimated the co-expression network for genes in the 4q region bounded by HHIP and BTC (~70MB), through partial correlations informed by protein-protein interactions. We identified several co-expressed gene pairs based on partial correlations, including NPNT-HHIP, BTC-NPNT and FAM13A-TET2, which were replicated in independent lung tissue cohorts. Upon clustering the co-expression network, we observed that four genes previously associated to COPD: BTC, HHIP, NPNT and PPM1K appeared in the same network community. Finally, we discovered a sub-network of genes differentially co-expressed between COPD vs controls (including FAM13A, PPA2, PPM1K and TET2). Many of these genes were previously implicated in cell-based knock-out experiments, including the knocking out of SPP1 which belongs to the same genomic region and could be a potential local key regulatory gene. These analyses identify chromosome 4q as a region enriched for COPD genetic susceptibility and differential co-expression.