ru24.pro
News in English
Октябрь
2024

Precision and temporal dynamics in heading perception assessed by continuous psychophysics

0

by Björn Jörges, Ambika Bansal, Laurence R. Harris

It is a well-established finding that more informative optic flow (e.g., faster, denser, or presented over a larger portion of the visual field) yields decreased variability in heading judgements. Current models of heading perception further predict faster processing under such circumstances, which has, however, not been supported empirically so far. In this study, we validate a novel continuous psychophysics paradigm by replicating the effect of the speed and density of optic flow on variability in performance, and we investigate how these manipulations affect the temporal dynamics. To this end, we tested 30 participants in a continuous psychophysics paradigm administered in Virtual Reality. We immersed them in a simple virtual environment where they experienced four 90-second blocks of optic flow where their linear heading direction (no simulated rotation) at any given moment was determined by a random walk. We asked them to continuously indicate with a joystick the direction in which they perceived themselves to be moving. In each of the four blocks they experienced a different combination of simulated self-motion speeds (SLOW and FAST) and density of optic flow (SPARSE and DENSE). Using a Cross-Correlogram Analysis, we determined that participants reacted faster and displayed lower variability in their performance in the FAST and DENSE conditions than in the SLOW and SPARSE conditions, respectively. Using a Kalman Filter-based analysis approach, we found a similar pattern, where the fitted perceptual noise parameters were higher for SLOW and SPARSE. While replicating previous results on variability, we show that more informative optic flow can speed up heading judgements, while at the same time validating a continuous psychophysics as an efficient method for studying heading perception.