Development of sustainable alkali activated composite incorporated with sugarcane bagasse ash and polyvinyl alcohol fibers
0
by Munir Iqbal, Muhammad Ashraf, Loai Alkhattabi, Sohaib Nazar, Jihad Alam, Hisham Alabduljabbar, Ali Husnain
The infrastructure boom has driven up cement demand to 30 billion tons annually. To address this and promote sustainable construction, researchers are developing solutions for carbon-neutral building practices, aiming to transform industrial waste into an eco-friendly alternative. This study aims to develop and enhance the mechanical and durability properties of alkali-activated composites (AACs) by incorporating varying amounts (5, 10, 15, and 20%) of finely ground bagasse ash (GBA) and polyvinyl alcohol (PVA) fibers. Results indicate that higher GBA content initially reduces the 7th and 14th-day strength but results in increased strength at later ages. The optimum 28-day strength is achieved with a 10% GBA content, leading to a 10% increase in compressive strength, 8% increase in tensile strength, and 12% increase in flexural strength. Additionally, the incorporation of GBA enhanced the resistance of the composite to chloride ingress, thus reducing its conductance and increasing the overall durability. This study demonstrated the potential of GBA as an eco-friendly material, emphasizing the significance of tailored AACs formulations for durable and sustainable construction practices.