ru24.pro
News in English
Сентябрь
2024
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21
22
23
24
25
26
27
28
29
30

Identifying crucial lncRNAs and mRNAs in hypoxia-induced A549 lung cancer cells and investigating their underlying mechanisms via high-throughput sequencing

0

by Lin Lin, Lili Deng, Yongxia Bao

Background

Rapid proliferation and outgrowth of tumor cells frequently result in localized hypoxia, which has been implicated in the progression of lung cancer. The present study aimed to identify key long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in hypoxia-induced A549 lung cancer cells, and to investigate their potential underlying mechanisms of action.

Methods

High-throughput sequencing was utilized to obtain the expression profiles of lncRNA and mRNA in both hypoxia-induced and normoxia A549 lung cancer cells. Subsequently, a bioinformatics analysis was conducted on the differentially expressed molecules, encompassing functional enrichment analysis, protein-protein interaction (PPI) network analysis, and competitive endogenous RNA (ceRNA) analysis. Finally, the alterations in the expression of key lncRNAs and mRNAs were validated using real-time quantitative PCR (qPCR).

Results

In the study, 1155 mRNAs and 215 lncRNAs were identified as differentially expressed between the hypoxia group and the normoxia group. Functional enrichment analysis revealed that the differentially expressed mRNAs were significantly enriched in various pathways, including the p53 signaling pathway, DNA replication, and the cell cycle. Additionally, key lncRNA-miRNA-mRNA relationships, such as RP11-58O9.2-hsa-miR-6749-3p-XRCC2 and SNAP25-AS1-hsa-miR-6749-3p-TENM4, were identified. Notably, the qPCR assay demonstrated that the expression of SNAP25-AS1, RP11-58O9.2, TENM4, and XRCC2 was downregulated in the hypoxia group compared to the normoxia group. Conversely, the expression of LINC01164, VLDLR-AS1, RP11-14I17.2, and CDKN1A was upregulated.

Conclusion

Our findings suggest a potential involvement of SNAP25-AS1, RP11-58O9.2, TENM4, XRCC2, LINC01164, VLDLR-AS1, RP11-14I17.2, and CDKN1A in the development of hypoxia-induced lung cancer. These key lncRNAs and mRNAs exert their functions through diverse mechanisms, including the competitive endogenous RNA (ceRNA) pathway.