Optimized ensemble deep learning for predictive analysis of student achievement
0
by Kaitong Wang
Education is essential for individuals to lead fulfilling lives and attain greatness by enhancing their value. It improves self-assurance and enables individuals to navigate the complexities of modern society effectively. Despite the obstacles it faces, education continues to develop. The objective of numerous pedagogical approaches is to enhance academic performance. The development of technology, especially artificial intelligence, has caused a significant change in learning. This has made instructional materials available anytime and wherever easily accessible. Higher education institutions are adding technology to conventional teaching strategies to improve learning. This work presents an innovative approach to student performance prediction in educational settings. The strategy combines the DistilBERT with LSTM (DBTM) hybrid approach with the Spotted Hyena Optimizer (SHO) to change parameters. Regarding accuracy, log loss, and execution time, the model significantly improved over earlier models. The challenges presented by the increasing volume of data in graduate and postgraduate programs are effectively addressed by the proposed method. It produces exceptional performance metrics, including a 15-25% decrease in processing time through optimization, 98.7% accuracy, and 0.03% log loss. This work additionally demonstrates the effectiveness of DBTM-SHO in administering extensive datasets and makes an important improvement to educational data mining. It provides a robust foundation for organizations facing the challenges of evaluating student achievement in the era of vast data.