ru24.pro
News in English
Июль
2024

Betaine and I-LG may have a predictive value for ATB: A causal study in a large European population

0

by Xiaomin Xian, Li Li, Jing Ye, Wenxiu Mo, Dabin Liang, Minying Huang, Yue Chang, Zhezhe Cui

Purpose

To analyze the causal relationship between 486 human serum metabolites and the active tuberculosis (ATB) in European population.

Methods

In this study, the causal relationship between human serum metabolites and the ATB was analyzed by integrating the genome-wide association study (GWAS). The 486 human serum metabolites were used as the exposure variable, three different ATB GWAS databases in the European population were set as outcome variables, and single nucleotide polymorphisms were used as instrumental variables for Mendelian Randomization. The inverse variance weighting was estimated causality, the MR-Egger intercept to estimate horizontal pleiotropy, and the combined effects of metabolites were also considered in the meta-analysis. Furthermore, the web-based MetaboAnalyst 6.0 was engaged for enrichment pathway analysis, while R (version 4.3.2) software and Review Manager 5.3 were employed for statistical analysis.

Results

A total of 21, 17, and 19 metabolites strongly associated with ATB were found in the three databases after preliminary screening (P < 0.05). The intersecting metabolites across these databases included tryptophan, betaine, 1-linoleoylglycerol (1-monolinolein) (1-LG), 1-eicosatrienoylglycerophosphocholine, and oleoylcarnitine. Among them, betaine (I2 = 24%, P = 0.27) and 1-LG (I2 = 0%, P = 0.62) showed the lowest heterogeneity among the different ATB databases. In addition, the metabolic pathways of phosphatidylethanolamine biosynthesis (P = 0.0068), methionine metabolism (P = 0.0089), betaine metabolism (P = 0.0205) and oxidation of branched-chain fatty acids (P = 0.0309) were also associated with ATB.

Conclusion

Betaine and 1-LG may be biomarkers or auxiliary diagnostic tools for ATB. They may provide new guidance for medical practice in the early diagnosis and surveillance of ATB. In addition, by interfering with phosphatidylethanolamine biosynthesis, methionine metabolism, betaine metabolism, oxidation of branched-chain fatty acids, and other pathways, it is helpful to develop new anti-tuberculosis drugs and explore the virulence or pathogenesis of ATB at a deeper level, providing an effective reference for future studies.