ru24.pro
News in English
Май
2024

Interannual changes in atmospheric oxidation over forests determined from space | Science Advances

0

Abstract

The hydroxyl radical (OH) is the central oxidant in Earth’s troposphere, but its temporal variability is poorly understood. We combine 2012–2020 satellite-based isoprene and formaldehyde measurements to identify coherent OH changes over temperate and tropical forests with attribution to emission trends, biotic stressors, and climate. We identify a multiyear OH decrease over the Southeast United States and show that with increasingly hot/dry summers the regional chemistry could become even less oxidizing depending on competing temperature/drought impacts on isoprene. Furthermore, while global mean OH decreases during El Niño, we show that near-field effects over tropical rainforests can alternate between high/low OH anomalies due to opposing fire and biogenic emission impacts. Results provide insights into how atmospheric oxidation will evolve with changing emissions and climate.